Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Split-computing has recently emerged as a paradigm for offloading computation of visual analytics models from low-powered mobile devices to edge or cloud servers, by which the mobiles execute part of the model and compress and send the intermediate features, and the servers complete the remaining model computation. Prior feature compression approaches train different compression models and possibly visual analytics models to reach different target bit rates. We propose a scalable compression model that compresses the intermediate features of the YOLO object detection model into a layered bitstream, which can be easily adapted to meet the rate constraint of a dynamic network. Our approach achieves comparable rate-accuracy performance compared to prior non-scalable compression approaches over a large bitrate range.more » « less
-
Recent advances in computer vision has led to a growth of interest in deploying visual analytics model on mobile devices. However, most mobile devices have limited computing power, which prohibits them from running large scale visual analytics neural networks. An emerging approach to solve this problem is to offload the computation of these neural networks to computing resources at an edge server. Efficient computation offloading requires optimizing the trade-off between multiple objectives including compressed data rate, analytics performance, and computation speed. In this work, we consider a “split computation” system to offload a part of the computation of the YOLO object detection model. We propose a learnable feature compression approach to compress the intermediate YOLO features with lightweight computation. We train the feature compression and decompression module together with the YOLO model to optimize the object detection accuracy under a rate constraint. Compared to baseline methods that apply either standard image compression or learned image compression at the mobile and perform image de-compression and YOLO at the edge, the proposed system achieves higher detection accuracy at the low to medium rate range. Furthermore, the proposed system requires substantially lower computation time on the mobile device with CPU only.more » « less
An official website of the United States government

Full Text Available